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Università degli Studi di Napoli Federico II

Via Claudio 21, 80125, Napoli, Italy

{roberto.pietrantuono, stefano.russo}@unina.it

Abstract—We introduce covrel, an adaptive software testing
approach based on the combined use of operational profile
and coverage spectrum, with the ultimate goal of improving
the delivered reliability of the program under test. Operational
profile-based testing is a black-box technique that selects test cases
having the largest impact on failure probability in operation; as
such, it is considered well suited when reliability is a major
concern. Program spectrum is a characterization of a program’s
behavior in terms of the code entities (e.g., branches, statements,
functions) that are covered as the program executes. The driving
idea of covrel is to complement operational profile information
with white-box coverage measures based on count spectra, so as
to dynamically select the most effective test cases for reliability
improvement. In particular, we bias operational profile-based test
selection towards those entities covered less frequently. We assess
the approach by experiments with 18 versions from 4 subjects
commonly used in software testing research, comparing results
with traditional operational and coverage testing. Results show
that exploiting operational and coverage data in a combined
adaptive way actually pays in terms of reliability improvement,
with covrel overcoming conventional operational testing in more
than 80% of the cases.

Keywords-Testing; Reliability; Operational profile; Program
count spectrum; Operational coverage; Test case selection.

I. INTRODUCTION

Testing based on the operational profile, i.e., “as if it were in
the field” [1], is a fundamental technique in software reliability

engineering practice [2]. The aim is to select those test inputs

that can expose failures having a higher occurrence probability,

based on the known or estimated operational profile, and

hence contributing more to program unreliability. Operational

profile-based testing is widely used for both reliability assess-
ment [3] [4] and reliability improvement (e.g., within the SRET

technique [5]). In this paper we address the latter goal.

Several studies document the effectiveness of operational

profile-based testing for reliability improvement [6] [7]. How-

ever, as for any test selection technique, it may suffer from the

saturation effect ([2], Chapter 13), due to which its continued

application will eventually lose efficacy. In other words, to

further improve reliability beyond a certain point, testing

should try to expose also those failures having low probability

of occurrence based on the operational profile [8].

In [9] the authors provide a formal reasoning model to sup-

port the intuition that since different techniques are effective

at discovering different faults, it is better to use a combination

of approaches rather than relying on one technique alone.

This is discussed also in [10], arguing that the combination

of techniques should aim at exposing high-occurrence failure

regions, but also as many failure regions as possible. Here

we apply the intuition of combining techniques by mixing

operational profile-based and coverage testing into a novel

hybrid technique, named covrel.
The approach is inspired by the notion of operational cov-

erage introduced in [11], which clusters entities into different

“importance” groups according to their count spectra, and

assigns them different weights while computing coverage. A

spectrum provides a signature of a program’s behaviour by

tracking the coverage of entities (e.g., statements, branches,

or even whole paths) during execution [12]. Traditionally,

coverage-based testing approaches consider hit spectra, i.e.,

they only measure which entities have been executed (at

least once). Count spectra provide richer information, by also

measuring the number of times each entity is executed, and

are typically used in program optimization [13].

In [11] operational coverage was studied as an adequacy

criterion for operational profile-based testing. Here we exploit

operational coverage to support test selection, precisely we

propose that among several test cases that would have a

same estimated usage probability in the operational profile,

we select those that exercise entities yielding so far a low

count spectrum. Moreover, the approach is adaptive, in that

testing proceeds in iterations (as previously done in [8]), and

at each iteration both the profile-based allocation of number

of tests to partitions and operational coverage measures are

dynamically updated.

As a result, covrel selects the test cases according to

the (black-box) operational profile (i.e., the input domain

partitions more often invoked in operation are more exercised)

and, among the inputs within a same partition, covrel selects

those that exercise the least covered entities. To the best of our

knowledge, this is the first proposal encompassing the usage

of coverage spectra to guide test selection in the framework

of a reliability-oriented testing technique.

The type of software systems targeted in “covreling” are

those for which reliability is a driving concern of testing

activities. Examples are large-scale mission-critical systems,

for which the time (and cost) of executing individual tests is

high (due to configuration, set up, execution and shutdown).
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For instance, a study conducted in an industrial context in [14]

has shown that the fault detection rate for complex components

may decrease significantly over time, giving rise to the need to

improve the trend of testing efficacy (i.e., of the level of defec-

tiveness exposed by testers). For such industrial applications

it is particularly important that when operational testing enters

the saturation area, the marginal cost of executing additional

tests pays in terms of reliability improvement. In covrel we

pay the potential improvement in reliability with the cost of

measuring coverage.

We experimented covrel on a number of subjects from

the public Software-artifact Infrastructure Repository (SIR),

widely used in software testing research [15]. We compare

covrel with traditional operational and coverage testing on the

basis of several metrics. As we expected, the results show that

covrel generally outperforms each of them used in isolation

when targeting reliability improvement.

In summary, this paper provides the following contributions:

• We develop the covrel approach to testing, which com-

bines operational profile and coverage spectrum informa-

tion for improvement of delivered reliability;

• We evaluate covrel with several subjects from the well-

known SIR repository, and compare it empirically against

traditional operational and coverage testing;

• We provide a prototypal implementation of covrel for

repeatability and independent verifiability.

The rest of the paper is structured as follows. Section

II provides background information and overviews related

work. Section III presents the proposed covrel technique.

Section IV describes the experiments. Section V discusses

the results and their statistical significance, as well as the

threats to validity; it also describes the artifacts we produced

for implementing covrel, which we make available with the

aim to support verifiability. Section VI contains concluding

remarks and future work.

II. RELATED WORK

The literature of software reliability and operational profile-

based testing is huge. The underlying idea is to test a program

by selecting an input t according to a probability pt derived

from the operational profile distribution. An operational profile

is a quantitative characterization of how a system will be used,

and is usually built by assigning probability values to inputs

representing the probability that each will occur in operation

(e.g., by historical data, by design-level information, by expert

judgment). We refer to the highly referenced and still relevant

Lyu’s handbook [2] for a comprehensive overview of the topic,

and for the rest of this section we focus on related works

that from different perspectives explore the relation between

reliability and code coverage.

Many empirical studies, e.g., [16] [17] among the most

recent ones, assess the effectiveness of coverage-based testing.

However only a few of them measure test effectiveness in

terms of delivered reliability [6], as we do here. Among the

earliest studies, Del Frate and coauthors [18] found a corre-

lation between increase (decrease) in reliability and increase

(decrease) in at least one code coverage measure. In a later

work Frankl and Deng [19] performed a case study comparing

various approaches and showed that as coverage increases, the

probability to achieve high reliability targets increases as well.

However, they show also that the probability to reach very

high reliability values would require extremely large test sets,

and it is doubtful whether the improvement is worth the cost.

This is what motivates our work: covrel explores the usage of

coverage in combination with traditional operational testing

for reliability improvement.
Several authors have proposed to integrate test coverage in-

formation into models used to evaluate reliability as faults are

found and removed (a.k.a. Software Reliability Growth Models

or SRGMs). A recent short compendium of such coverage-

integrated SRGMs is given by Alrmuny [20]. Although the

basic motivation is the same, i.e., that reliability improvement

can be impacted by observed coverage measures, the usage

that we make of such measures is different. In SRGMs cov-

erage information is used to better tune reliability estimation,

as in [21]; in covrel we use coverage information for driving

test selection, building on the concept that coverage measures

can provide guidance in identifying what parts of a program

should be exercised when augmenting a test suite [22] [23].
Program spectra [12] are used extensively in software

analysis and testing [24]. Beyond their original application

in program optimization [13], in [25] Reps et al. introduced

the idea that differences between path spectra can be used

for identifying changes in program behaviour. Following [25],

code profiling information has been actively used to ana-

lyze the executions of different versions of programs, e.g.

in regression testing [26], or to compare traces of failed

and successful runs in fault diagnosis [27] [28]. Differently

from these approaches, we do not use spectra to differentiate

behaviors, but are interested in identifying which entities have

been less exercised.

III. APPROACH

A. Assumptions
Let us denote the input domain of the program under test

as D. Suppose a tester has a budget of T test cases to select

from a test suite. We make the following assumptions:

• The input domain D can be decomposed into M sub-

domains (hereafter also called partitions) D1, . . . , Dm.

These are divided according to some partitioning criterion

(e.g., functional or structural), usually depending on the

information available to test designers and on testing

objectives.

• The operational profile can be described as a probability

distribution over partitions Di. We denote with pi the

probability that an input is selected from Di in operation,

and
∑M

i=1 pi = 1. Inputs within a partition have the same

probability of runtime occurrence.

• A test case leads to failure or success; we are able to

determine when it is successful or not (perfect oracle).

• Test case runs are independent, i.e., all the non-executed

test cases are admissible each time. The execution of a
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test case is not constrained by the execution of some other

test case before. This affects the way in which a “test

case” is defined, since when test cases are sequences of

tasks, they can be grouped together in a single test case,

so that at the end of the test case the system goes back

to the initial state [29].

• The output of a test case is independent of the history of

testing; in other words, a failing test case is always such,

independently of the previously run test cases.

• A test suite from which test cases can be selected exists,

and coverage information of such test cases is available

or can be obtained.

B. The covrel strategy: overview

The objective of covrel is to improve delivered reliability

efficiently by means of a focused test case selection strategy.

The strategy proceeds adaptively in subsequent iterations, and

the underlying idea is to dynamically gain knowledge along

testing execution about i) which regions of the input space,

and then ii) which specific test cases within each region, are

expected to contribute more to reliability improvement at the

next iteration.

In line with [6], reliability is defined as R = 1−∑
t∈F pt,

where F is the set of inputs leading to failure (i.e., the failure

points) and pt is the expected probability of occurrence in

operation of input t. Thus, the reliability “contribution” of

a set of test cases depends on the number and size of the

detected failure regions1 (i.e., how many failure points are

corrected by the removal of the detected faults) and on their

expected probability of execution in operation. It may well

happen that eliminating few but frequent failure points is better

than eliminating many infrequent ones – so a balance between

these two contrasting objectives is needed. As detected failure

points are removed during the testing and debugging process,

the status of the input domain changes; this requires adaptivity,

if we want to look always for the best balance along the entire

process.

Covrel is designed to iteratively search for those test cases

with potentially the highest contribution to (un)reliability, by

combining the ability of finding still undetected faults with

the ability of finding high-occurrence ones. It uses learning
and adaptation to dynamically characterize the input domain

partitions and select test cases from them. The strategy is

sketched in Figure 1. The iterative process foresees two main

phases: the allocation of test cases to partitions Di, and the

selection of test cases within each partition. It is conceived

to exploit the results of test execution per partition (namely,

number of exposed failures and current coverage) at each

iteration, in order to drive test allocation and selection at

successive iterations. The steps are described in detail in the

following.

1A failure region is the set of failure points eliminated by a program
change [30].

Fig. 1: The covrel strategy

C. Phase 1: Allocation of test cases to partitions

Covrel’s adaptiveness aims at periodically re-allocating test

cases depending on where more tests are actually needed.

This is accomplished by means of an algorithm based on the

Importance Sampling (IS) method [31], which is an inference

method to approximate the true distribution of a variable of

interest that we also used in previous work [8]. In covrel, the

true unknown distribution of interest is the best number of test

cases for each partition that would maximize the delivered reli-

ability. The algorithm represents the beliefs (i.e., hypotheses)

about this distribution by means of sets of “samples”. Each

sample is associated with a probability that the belief is true:

at each iteration, these probabilities are updated by examining

some new samples of that hypothesis, and a larger number of

samples are drawn from hypotheses with a larger probability.

The goal is to converge, in few iterations, to the “true” best

distribution of test cases.

To establish how the probability of each hypothesis is

updated based on new collected samples, an update rule is

defined. At a given iteration k, the IS-based algorithm exploits

information from previous iterations about the observed failing

tests. The failure rate (denoted with ϕi), defined as number of

failing tests over number of executed ones, is used to smoothly

direct testing toward the partitions with a high expected

(un)reliability contribution in the next iteration. Specifically,

let us denote with π(k) the probability vector representing, for

each partition i and at iteration k, the likelihoods that testing
from that partition contributes to improve delivered reliability.

Denoting with θi = piϕi the weighted failure rate (normalized
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so that
∑

i θi = 1), the update rule for the values π
(k)
i forming

the probability vector is defined as:

π
(k)
i = γπ

(k−1)
i + (1− γ) · (1− θ

(k−1)
i ). (1)

Such assignment tends to explore the input domain by pro-

gressively moving tests to partitions where unreliability contri-

bution was still small; this allows detecting hard-to-find faults

after easier ones have been found. The smoothness of adaptive-

ness is determined by the parameter γ ∈ [0, 1], regulating how

the algorithm considers past iterations’ results with respect

to current ones2. Note that the π
(k)
i values are normalized,

since they are probabilities (π
(k)
i = (π

(k)
i )/(

∑
i∈D π

(k)
i )).

Starting from π
(k)
i , T

(k+1)
i tests are allocated to partition Di

at iteration k by a simple procedure to assign, proportionally,

more tests to domains with higher pi values [8], so as:

T
(k+1)
i ≈ T (k+1)π

(k)
i .

To determine the best T (k+1) at each iteration, we consider

an adaptive implementation of importance sampling [32].

Based on a desired error and confidence, this variant tends to

progressively reduce the number of required samples as more

information becomes available, using the formula:

T (k+1) = 1
2ξ
χ2
ρ−1,1−δ ≈ ρ−1

2ξ
{1− 2

9(ρ−1)
+
√

2
9(ρ−1)

z1−δ}3
(2)

where: ξ is the error we want to tolerate between the sampling-

based estimate and the true distribution; 1 − δ is the desired

confidence in this approximation; ρ is the number of partitions

from which at least one test case has been drawn in the k-

th iteration; z1−δ is the normal distribution evaluated with

significance level δ.

The algorithm is triggered by an initial static allocation of

T (0) tests at iteration 0. Several alternatives can be chosen

for such initial allocation depending on the initial knowledge

about failure likelihood of partitions (e.g., via expert judgment

about partition criticality). We assume that no information

is available, and allocate tests proportionally to the expected

usage of the partition pi – so giving more tests to partitions

whose inputs are expected to be more exercised. The number

of tests T (0) must be a small subset of T , as it is just required

to trigger the allocation algorithm [33]3.

Summarizing, the output of this phase is the computation

of the most proper number of test cases T (k) to run and their

allocation to partition Di, namely T
(k)
i . In the following we

detail how these tests are selected within partitions.

D. Phase 2: Selection of test cases within a partition

While the previous “allocation step” suggests the number

T
(k)
i of test cases to execute for each partition, the “selection

step” cares about picking these T
(k)
i test cases among the

ones not yet executed (without-replacement selection) in an

effective way.

2We set γ at 0.5 in our experiments.
3In general, the bigger T (0) is, the better the initial learning could be, but

the later the adaptation will start. In our experiment, we opted for T (0) equal
to the number of partitions.

As we assume that no initial knowledge is available about

the failure likelihood of partitions, at the first iteration of covrel
the test cases are selected following a traditional operational

profile based testing, i.e., they are just randomly selected

according to occurrence probability of each partition Di.

However, while the test cases are executed, their traces are

tracked, as in any white-box testing strategy. At the end of each

iteration, the learning phase takes place: the covrel approach

computes the cumulative count spectrum achieved during the

execution of the selected test cases and uses it to drive the

selection strategy for the next iteration.

More precisely, the cumulative count spectrum is used to

identify the frequency with which entities have been exercised.

For the experiments we report in Section IV, we classified the

entities into three different importance groups: high, medium,

and low. To obtain such groups, we ordered the entities

available in the count spectrum according to their frequency of

usage and assigned the top 1/3 entities to the high frequency

group; the second 1/3 entities to the medium frequency group;

and the last 1/3 entities to the low frequency group.

Next, our approach evaluates each test case that belongs

to the target partition Di and ranks them according to how
they cover the program entities. For computing the test case

rank, we assign weights to each importance group. As we are

interested in selecting test cases that cover entities so far rarely

exercised, we assign the weights for the importance groups in

such a way that the medium group is one order of magnitude

more important than the high, and the low group, on its turn, is

one order of magnitude more important than the medium group

(e.g., Whigh = 10−1, Wmedium = 100, and Wlow = 101).

For a given partition Di, the test cases with the highest

ranks are the ones selected to compose the T
(k)
i set. In the

case of a tie, i.e., multiple test cases would achieve the same

rank, our heuristic randomly selects one test case among the

tied ones. The allocation and selection steps are repeated in

covrel until the number of available test cases T has been run,

as depicted in Figure 1.

IV. EXPERIMENTS

We performed a controlled experiment to assess the effec-

tiveness of covrel in reliability improvement. The experiment

aimed at answering the following research question: Is covrel
more effective at reliability improvement than traditional op-
erational profile-based testing? For our setting, more effective

means being able to deliver a given reliability value with fewer

test cases.

We consider various testing scenarios under different op-

erational profiles; each scenario is determined by the subject

program under test, the coverage criterion adopted by the cov-
rel test selection algorithm (e.g., function, branch or statement

coverage), and the selection of seeded faults. These factors are

described in the remainder of this section.

A. Study Subjects

We evaluate covrel on a total of 18 versions from four

subjects taken from SIR: Grep, Gzip, Sed, and Flex. Grep
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is a command-line utility for searching lines matching a

given regular expression in the provided file(s); Gzip is an

application used for file compression and decompression; Flex

is used for generating scanners that are able to recognize

lexical patterns in text; and Sed is a stream editor that

performs text transformations on an input stream. Three of

these programs (Grep, Gzip, and Flex) are available from SIR

with 5 variant versions containing seeded faults, whereas Sed

contains 7 variant versions. All of them have test suites derived

according to the category-partition method available via tsl
(test specification language) files.

Because our study required us to measure the reliability

delivered by the evaluated approaches at different stages of

the test execution, we excluded the versions where the test

suite available from SIR could not identify any of the seeded

faults available for that particular version. This happened for

Grep v5, Gzip v3, and Sed v1. Besides that, we also excluded

version 5 of Flex due to its anomalous characteristics: 3 faults

could be revealed by more than 80% of the test cases, while

2 other faults could be revealed by ≈99% of tests; the vast

majority of the test cases available in the test suite would be

able to reveal 100% of the seeded faults – so all the faults

would be detected after few tests.

Additional details about our study subjects are displayed

in Table I. Column “LoC” shows the lines of code4 of each

variant version. The column “Detectable faults” contains the

number of faults, from the set of seeded faults, that could

be detected by the SIR test suite, whereas the column “Hard

faults” refers to the subset of detectable faults that could be

revealed by less than 50% of the available test cases.

TABLE I: Study subjects considered in our investigations

Subject LoC Test
Suite

Seeded
faults

Detectable
faults

“Hard”
faults

Grep v1 9463 809 18 5 4
Grep v2 9987 809 8 4 4
Grep v3 10124 809 18 8 5
Grep v4 10143 809 12 3 3
Gzip v1 4594 214 16 7 6
Gzip v2 5083 214 7 3 1
Gzip v4 5233 214 12 3 3
Gzip v5 5745 214 14 5 4
Sed v2 9867 360 5 5 3
Sed v3 7146 360 6 6 5
Sed v4 7086 363 4 1 1
Sed v5 13398 370 4 4 4
Sed v6 13413 370 6 6 6
Sed v7 14456 370 4 4 4
Flex v1 9558 567 19 16 8
Flex v2 10274 670 20 13 9
Flex v3 10296 670 17 9 9
Flex v4 11447 670 16 11 8

Total: 167313 8862 206 113 87

B. Study Settings

Besides the study subjects acquired from SIR, our experi-

ments required the following additional artifacts.

4Collected using the CLOC utility (http://cloc.sourceforge.net/).

Test Suite. We used the test suites from SIR that are

available along with each one of the subjects investigated in

our study. The number of test cases available in each test suite

is provided in Table I.

Partitions. We assign each test case in the test suite to a

different partition based on the functionality exercised by the

test input. To this aim, we inspected the tsl (test specification

language) file made available with the subject (which specifies

the function units and their input space features in terms

of parameters, categories and choices, according to category-

partition testing terminology) along with the user manual in

order to infer the main functionalities. Each functionality is

associated with a partition; we ended up with 4 partitions for

Grep, 5 for Gzip, 3 for Sed, and 6 for Flex. We then derived

a script to automatically parse the available test cases and

allocate each test case to its respective partition based on the

functionality it exercises.

Fault Matrix. For each subject and version, we run the

available test suite and, with the support of SIR tools, we

extracted the fault-matrix, i.e., a mapping that tells us which

faults can be revealed by which test cases. Because in our

study we want to evaluate the effectiveness of the proposed

approach to reveal the most relevant faults, besides the original

fault-matrix we derived a second modified one (we refer to it

as “hard fault-matrix”) by excluding the easy-to-find faults that

could be revealed by 50% (or more) test cases.

Operational Profile. A testing configuration is a combina-

tion of the fault matrix and the coverage criteria adopted by

covrel (i.e., function, branch, and statement). A testing sce-
nario is a testing configuration applied to a program-version

pair. For each testing scenario, we derived 50 operational pro-

files. An operational profile is a quantitative characterization

of how a system will be used [1]: it can be described as a set

of values, pi, denoting the probability that an input is selected

from partition i and such that
∑m

i=1 pi = 1, with m being

the number of partitions [29]. Profiles are built by generating

the pi values according to a uniform distribution in [0,1], then

normalizing the values so that they sum up to 1.

C. Compared Techniques

We compare covrel against conventional operational testing,

where test cases are selected based exclusively on the opera-

tional profile estimate [5]. The implemented operational testing

technique (hereafter OT) selects a partition Di from the given

test suite at random in accordance with its usage probability

{pi}. A test within the partition is then selected with equal

probability, i.e., by a uniform distribution, similarly to related

literature (e.g., [4], [29]).

We examined covrel while targeting different coverage

criteria (function, branch, and statement). As we want covrel
to bias the test selection towards test cases covering entities

more rarely exercised, we set the weights for the importance

groups as: Whigh = 10−1, Wmedium = 100, and Wlow = 101.

The importance sampling parameters (see Section III-C) are

set as follows: the learning factor is γ = 0.5; the confidence

is (1 − δ) = 0.95; the desired maximum error is ξ = 0.2 for
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Grep, Sed and Flex; and ξ = 0.1 for Gzip, as the lower ratio

of test cases over partitions suggests a faster adaptation.

D. Number of runs

Considering the above factors, we have 2 (fault matrices) X

3 (coverage criteria) = 6 testing configurations, each applied to

the 18 program-version pairs, getting to 108 different testing
scenarios. In each testing scenario, we compare the two testing

techniques (covrel and operational testing) by running 50

testing sessions are performed (one per generated operational

profile). The total number of runs thus is: 108 testing scenarios

X 50 profiles X 2 compared techniques = 10,800 runs.

E. Evaluation Metrics

To address the research question, we compare the techniques

in terms of testing reliability, namely probability of not failing

during testing [34]5 vs number of test cases.

Specifically, in each testing session we measure the number

of test cases required to achieve reliability 1 (i.e., to reveal

all the faults that can be detected by that test suite) by the

two compared techniques, let us denote them as Ncovrel and

NOT , respectively. Then, as a summary metric, in each given

testing scenario we count the number of times Ncovrel < NOT

(i.e., covrel achieves reliability 1 with fewer test cases than

traditional operational testing) or the vice versa over the 50

repetitions.

Moreover, in order to evaluate how the techniques perform

during a testing session, we assess the reliability growth

at different checkpoints. Specifically, we observe delivered

reliability after the execution of 10%, 50% and 90% of total

executed test cases to achieve reliability 16. We count the

number of wins (in this case, in terms of achieved reliability)

of each technique at every checkpoint.

F. Experiment Procedure

The automated procedure followed for each testing session

includes these steps:

1) Generate the operational profile as explained above.

2) Select the test case according to the technique under

evaluation (covrel and OT) and observe if it exposes

a failure or not. The detection of failures is done by

considering the fault matrices.

3) If a failure occurs, remove the fault7.

4) Repeat from step 2 until T test cases are executed.

5) At the end of the session, compute the metrics presented

above, useful for evaluation.

5In general, the available test cases are not able to detect all the faults,
like in the experimented subjects (cf. with Table I), so even when testing
reliability is 1 (i.e., all faults detectable by the test suite are detected), the
actual operational reliability is likely not 1 because undetected faults could be
exposed in operation. Since operational reliability is hard to measure, testing
reliability is adopted for comparison purposes.

6We take the minimum of Ncovrel and NOT , and consider the 10%, 50%
and 90% of it.

7Note that for one failure, the tester could remove more faults (failure
regions may not be disjoint); in our case we choose to remove all the faults,
i.e., the repetition of the test case must no longer lead to failure

V. RESULTS

In this section we report the results from the experiments

performed to answer our research question whether covrel is

more effective at reliability improvement than OT. We mea-

sure effectiveness in reliability improvement in two different

manners: respective number of test cases required to reach a

same high reliability value, fixed to 1 in the reported study

(Section V-A); and respective values of reliability achieved

with a same fixed number of test cases (Section V-B).

Although coverage-based testing has a different objective,

by discovering faults it can improve reliability. As covrel
combines operational and coverage information, we would

like to compare it not only with OT, but also with coverage-

based testing, to assess if our combination outperforms each of

the two approaches taken alone in improving reliability. The

results of a further evaluation assessing covrel vs traditional

coverage-based selection are reported in Section V-C.

A. Which approach achieves reliability 1 faster?

In Table II we report the results from the six configurations

tested (combinations of coverage strategy and fault matrix, see

Section IV-F), counting for each: the number of times (out

of 50 different observations) in which covrel outperforms OT

and wins, in Column W; the number of times covrel loses,

in Column L; the ties in Column T. At bottom of the same

table, two rows report the Mean and Median values for each

column.

As evident by the Mean and Median values, our approach

is generally more effective in reaching maximum reliability.

In all cases the Mean and Median of win counts are much

higher than losses, and also higher considering losses and ties

summed together.

Looking more in detail, we can observe that if we consider

each pair subject&configuration (i.e., what we called a testing

scenario) as a distinct experiment, we got 96 valid results (12

pairs among the possible 18*6=108 ones are marked as N/A

because for such cases the “hard” fault matrix and the original

one were the same – see Section IV-A). Among these, covrel
wins, i.e. achieves reliability 1 with a lower number of test

cases than OT, in 77 cases, i.e., more than 80% of the times.

The above result does not distinguish between clear and

tight wins, i.e., regardless whether the result is 50 wins over

0 losses (e.g., as for Grep v1 in Configurations 5 and 6) or

26 wins against 21 losses (as for Flex v1 in Configuration

2), it is anyhow counted as 1. If we consider each repetition

on a different profile as a different observation, and consider

the sum of wins against sum of losses, then we can observe

that covrel outperforms OT in all configurations (i.e., summing

the results per columns), and for 14 subjects out of 18 (i.e.,

summing the results per rows). Precisely, covrel cumulatively

loses with Grep v2, Gzip v2, Sed v7 and Flex v3, and wins

for all other subjects.

It is interesting to look at the cases where covrel performs

worse than OT. In general (with the only exception of Sed

v3, for which covrel loses only in 1 configuration) when

this happens, it happens consistently in all configurations,
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TABLE II: Number of wins/losses/ties over 50 repetitions in terms of number of required test cases to achieve reliability=1

Subject
Config. 1

Function - “hard” FM
Config. 2

Branch - “hard” FM
Config. 3

Statement - “hard” FM
Config. 4

Function - “default” FM
Config. 5

Branch - “default” FM
Config. 6

Statement - “default” FM
W L T W L T W L T W L T W L T W L T

Grep v1 49 1 0 49 1 0 48 2 0 49 1 0 50 0 0 50 0 0
Grep v2 N/A N/A N/A N/A N/A N/A N/A N/A N/A 1 49 0 10 40 0 9 41 0
Grep v3 47 3 0 29 21 0 32 18 0 40 10 0 27 23 0 37 12 1
Grep v4 N/A N/A N/A N/A N/A N/A N/A N/A N/A 19 31 0 49 1 0 49 1 0
Gzip v1 48 2 0 42 7 1 46 4 0 35 15 0 34 16 0 33 17 0
Gzip v2 2 35 13 0 33 17 3 33 14 32 2 16 2 34 14 5 32 13
Gzip v4 49 0 1 50 0 0 49 1 0 49 1 0 50 0 0 50 0 0
Gzip v5 44 5 1 45 5 0 42 8 0 45 5 0 42 8 0 46 4 0
Sed v2 38 12 0 40 10 0 46 4 0 44 6 0 34 16 0 36 14 0
Sed v3 14 36 0 38 12 0 45 5 0 33 17 0 43 6 1 46 3 1
Sed v4 N/A N/A N/A N/A N/A N/A N/A N/A N/A 48 1 1 48 1 1 48 2 0
Sed v5 41 6 3 35 10 5 36 9 5 35 7 8 39 10 1 46 3 1
Sed v6 39 11 0 41 6 3 41 8 1 39 11 0 41 9 0 42 7 1
Sed v7 12 37 1 23 27 0 17 31 2 9 40 1 22 28 0 21 29 0
Flex v1 33 14 3 26 21 3 32 12 6 32 14 4 31 17 2 25 21 4
Flex v2 45 5 0 43 7 0 41 9 0 47 3 0 41 9 0 44 6 0
Flex v3 N/A N/A N/A N/A N/A N/A N/A N/A N/A 16 34 0 2 48 0 4 46 0
Flex v4 36 14 0 31 19 0 28 22 0 42 8 0 30 20 0 28 21 1

Mean 35.5 12.92 1.57 35.14 12.78 2.07 36.14 11.85 2 34.16 14.16 1.66 33.05 15.88 1.05 34.38 14.38 1.22
Median 40 8.5 0 39 10 0 41 8.5 0 37 9 0 36,5 13 0 39.5 9.5 0.5

hinting at a possible explanation that perhaps there are types of

failure regions for which our approach does not perform well.

However, further empirical investigation is required before a

general conclusion can be drawn.

On the other hand, especially interesting for us is the overall

good result over configurations. This result shows that the idea

of combining operational profile-based testing with coverage

spectra is promising across different coverage criteria, and for

both “easy” and “hard” faults.

We further evaluated the above results with statistical analy-

sis. Given a testing scenario, we consider the above number of

times a technique wins as our performance measure. We used

the Wilcoxon signed-rank test8 to assess the null hypothesis

that the difference between the number of wins in the two

compared cases follows a symmetric distribution around zero,

namely they are statistically equivalent. Results are displayed

in Table IIIa and they clearly show the high confidence on

rejecting the null hypothesis as well as the big difference

between the overall mean (and median) values of the number

of wins.

B. How do covrel and OT compare in terms of delivered
reliability evolution?

In practice, it may not be realistic to assume that testing

can continue until reliability achieves 1. So, it may be also

interesting to look at the results achieved at intermediate

stages of testing. We thus compared the effectiveness of covrel
against OT at three intermediate checkpoints, namely, after the

execution of 10%, 50% and 90% of tests run to get reliability

1, as defined in Section IV-E. At each checkpoint we measured

the achieved reliability by either approach and counted which

one is yielding a higher value. For the sake of space, we report

8We could alternatively apply multiple sign (wins, loss, ties) tests with
multiple comparison protection procedure, but we opted for Wilcoxon signed-
rank test by treating the number of wins as our performance variable, since
it is indeed more powerful [35].

TABLE III: Hypothesis tests. Text in boldface indicates that

the difference is significant at least at 0.05

(a) Number of wins in terms of test cases to achieve
reliability 1

Pairwise Comparison
covrel OT

Mean 34.62 13.81
Median 39.00 9.50

p-value 3.1270e-09 -

(b) Number of wins in terms of reliability at checkpoints

Pairwise Comparison
10% 50% 90%

covrel Mean 11.40 17.12 16.26
OT Mean 8.5 11.85 13.77
covrel Median 7 16 15
OT Median 8 9 10

covrel−OT
p-value 0.2168 0.0087 0.4156

the Mean and Median results of the number of wins and losses

of covrel against OT (Table IV).

Figure 2 shows a sample of cases, specifically we observed

the delivered reliability of all subjects at 90%, and we picked

the version in which covrel performs best (on the left), and

the version in which performs worst (on the right). From this

figure we can see that on Flex covrel tends to be consistently

better than OT, the opposite happens on Sed, and finally on

Grep and Gzip the results vary across versions. So, again these

results hint at the need to continue experimentation of further

subject programs for generalization.

In this experiment we are interested to observe the trend

while reliability grows. Our expectation is that covrel would

yield better results in comparison with OT for higher values of

reliability (i.e., when OT starts suffering from the saturation

effect). Although results are again promising (the mean values,
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TABLE IV: Mean and Median values of wins/losses of covrel
in terms of delivered reliability over 50 repetitions at three

different checkpoints: 10%, 50% and 90%

Subject Result Mean Median
10% 50% 90% 10% 50% 90%

Grep v1
wins 28,67 40,00 40,67 22,5 41,5 39,5

losses 1,33 2,33 4,67 1 2 3,5

Grep v2
wins 14,00 10,00 6,33 14 8 5

losses 10,33 32,67 33,00 11 35 38

Grep v3
wins 7,33 16,83 15,67 7,5 16,5 15,5

losses 10,83 27,17 28,00 9,5 28,5 27

Grep v4
wins 22,67 20,33 16,00 23 23 23

losses 6,67 1,00 0,33 8 0 0

Gzip v1
wins 11,17 24,00 17,00 12 23 17

losses 18,17 22,83 27,83 20,5 23 27,5

Gzip v2
wins 0,67 2,33 5,00 0 0,5 4

losses 0,67 2,50 3,83 0 0 2

Gzip v4
wins 6,33 15,83 32,33 3,5 15,5 33,5

losses 1,00 3,17 2,17 0 2 1,5

Gzip v5
wins 11,50 23,83 19,67 10 22,5 18,5

losses 7,00 11,50 10,83 7 11 10,5

Sed v2
wins 7,83 8,50 4,33 7,5 6 1,5

losses 21,00 2,67 2,17 19,5 1,5 1

Sed v3
wins 18,50 22,67 15,00 19 23,5 16

losses 10,00 19,00 29,17 9,5 17,5 30

Sed v4
wins 0,00 0,00 0,00 0 0 0

losses 0,00 0,00 0,00 0 0 0

Sed v5
wins 7,50 17,50 17,33 7,5 17 15

losses 7,67 9,67 18,17 8 9,5 20,5

Sed v6
wins 3,83 8,17 13,00 4 8 12,5

losses 10,33 24,00 24,67 11 23,5 24

Sed v7
wins 3,17 11,33 13,00 2 12 13

losses 11,50 30,00 29,50 12 29 30

Flex v1
wins 5,67 11,33 14,67 5,5 12,5 16

losses 7,00 9,33 11,00 7 9,5 10,5

Flex v2
wins 35,00 39,33 29,67 35,5 44 32

losses 9,33 5,33 9,50 10 4,5 7

Flex v3
wins 40,00 30,00 19,67 41 28 20

losses 5,00 2,00 0,67 5 2 1

Flex v4
wins 3,17 2,17 1,83 3 1,5 1

losses 3,17 2,33 1,83 2,5 1,5 1

at each checkpoint, of covrel’s wins over subjects in a given

configuration are bigger than corresponding losses in all the 6

configurations X 3 checkpoints = 18 cases), we did not observe

such an increasing trend across checkpoints; on the contrary

covrel wins more often at the 50% checkpoint. In particular,

if we take the mean values of the number of wins at the three

checkpoints (reported in the first two rows of Table IIIb), we

see that: at the 10% the difference between covrel and OT is

around 3.5; at the 50% it is about 5.2, and at the 90% the gain

reduces to 2.5 (similar considerations stand for medians).

The hypothesis test compares the number of wins of the two

approaches at the three checkpoints. Results are displayed in

Table IIIb; the test achieved 0.05 p-value only at the 50%,

while in the other two cases, the average values of covrel and

OT wins are not significantly different. This confirms that there

is not a clear trend of covrel improvement across checkpoints,

and, since the final differences (i.e., at 100% of test cases) are

much more pronounced in favor of covrel, it means that most

of the work by covrel is done between 90% and 100%. This

is likely due to a greater ability to uncover more subtle, rare,

faults – a hypothesis also corroborated by observing that the

10%
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90%

0 10 20 30 40 50

(a) Grep v1

10%

50%

90%

0 10 20 30 40 50
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(c) Gzip v4
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Fig. 2: Covrel vs OT at checkpoints

average among the three means’ differences “covrel - OT” in

the configurations with “hard” faults is bigger than the same

average with all the faults inside (23.07 vs 19.06).

C. How does covrel compare with traditional white-box
coverage-based selection heuristics?

As we make use of coverage information to drive the selec-

tion phase of our approach, we performed further evaluations

to investigate the effectiveness of covrel when compared with

traditional white-box coverage-based selection. For doing so,

we adopted the greedy total and greedy additional heuristics

as they are often considered the baseline for coverage-based

selection approaches due to their high cost-effectiveness ra-

tio [36].

In making such a comparison, we need to consider though

that test selection driven by reliability or by coverage set

quite different targets. As said already, the former aims at

selecting test cases so to reproduce usage in operation, whereas

the latter aims at exploring exhaustively the program under

test. Because of such different goals, the stopping criteria

for reliability testing is achieving an acceptable estimation of

reliability in operation, while the greedy coverage approaches,

when applied for selection purposes, stop when the maximum
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coverage that can be attainable by the set of tests available for

selection is reached.

Therefore, the notion of operational profile and, conse-

quently, the notion of fault importance, that we applied in

the comparison between covrel and OT, is not applicable to

traditional coverage-based selection heuristics. Thus it does

not make sense to measure the delivered reliability at different

points of the selection task. However, if the test suite derived

by the selection approach is able to identify all the faults that

could be possibly revealed, we can at least be sure that the

maximum feasible reliability was achieved. Along these lines,

to have comparable results, we performed the following steps:

1) We compute (from the 50 runs reported in Table II)

the average number of test cases required by covrel to

achieve the maximum attainable reliability;

2) For each combination of subject, version, fault-matrix

and coverage criterion, we use the greedy total and

greedy additional heuristics to derive 10 test suites

targeting the maximum coverage that could be achieved

by the subjects’ test pool;

3) We stop the greedy selection when (i) all the faults

are revealed or (ii) the maximum attained coverage is

achieved, and we save the number of test cases selected.

In our experiments, in the vast majority of the observations

(≈ 97%) it was the case that either the selection heuristic

finished the 10 iterations being able to achieve maximum

reliability in all the cases, or it was never able to reveal all

the faults before reaching the maximum achievable coverage.

For the exceptional cases, if all the faults were revealed in at

least 5 observations, we computed the average number of test

cases required to achieve the maximum reliability; if not, we

considered that the selection approach was not able to achieve

maximum delivered reliability for that particular combination

of subject, version, fault-matrix and coverage criterion.

TABLE V: Average number of test cases required by covrel
and the greedy total heuristic to achieve the maximum attain-

able reliability

Subject Function Branch Statement
covrel total covrel total covrel total

Grep v1 304 547 130 - 113 574
Grep v2 623 - 321 531 358 501
Grep v3 72 - 156 487 97 477
Grep v4 611 728 108 724 108 728
Gzip v1 178 205 118 205 124 206
Gzip v2 26 3 28 1 29 3
Gzip v4 25 208 26 207 25 207
Gzip v5 62 204 66 207 60 206
Sed v2 84 - 114 92 72 88
Sed v3 62 - 44 352 42 352
Sed v4 47 - 26 123 45 131
Sed v5 11 - 11 362 10 362
Sed v6 70 - 47 104 60 89
Sed v7 50 - 42 - 44 -
Flex v1 18 411 16 379 18 382
Flex v2 276 669 354 669 314 664
Flex v3 542 - 611 614 622 618
Flex v4 96 4 228 4 257 4

Due to space limits, in Table V we report only the results

of our evaluation when considering the greedy total approach

and the default fault-matrix9.

Precisely, Table V gives the average number of test cases

required to achieve the maximum attainable reliability. For

interpreting the results, the lower the number, the better.

The cases in which the traditional coverage-based selection

approach was not able to reveal all the faults is represented

by a dash (–). This happened in 22% of the cases (12 out of

54) reported in Table V. The covrel approach performed better

in 85% of the cases (46 out of 54). For ease of readability we

highlight in bold the cases in which covrel performed better

than the greedy total approach.

When considering the same setting, the greedy additional

approach was not able to achieve the maximum attainable

reliability in 41% of the cases (22 out of 54) and it was

defeated by covrel in 50% of the cases.

D. Threats to validity

Beyond our best efforts in the accurate design and execution

of experiments, our results might still suffer from validity

threats.

As for internal validity, the selection of tests by covrel
and operational profile-based technique includes in either case

some random step, and thus without proper controlling the

experiment settings, an observed difference in the outcomes

might be due to random variability and not to actual differ-

ences in effectiveness. To prevent this, for each configuration

we repeated the experiment 50 times, and in Sections V-A and

V-B we reported the average outcomes over all repetitions.

A similar reasoning applies to our derivation of the oper-

ational profile partitions for each subject: these are used as

proxies for true operational profiles, but if our approximation

is not good, the observed results might not be related to

reliability. Using averaged data over 50 executions corre-

sponding to as many profiles helps to mitigate this risk, but

further experiments with true profiles may be needed to fully

neutralize it.

Another threat to internal validity might derive from the

usage of the test suites available in the SIR repository [15],

which: i) do not achieve full coverage, and ii) do not detect

all faults in the repository. Therefore, we might have observed

outcomes that are impacted by such characteristics of the test

suites, rather than by the “treatment” under study. To mitigate

this risk, we could have manipulated the test suite, e.g., by

adding more test cases. However, the SIR repository data

represent a “golden standard” for benchmarking purposes and

are used in several similar studies. Thus, to make the study

more objective and repeatable we preferred to undergo this

potential threat and use each subject as it is provided with all

of its artifacts.

Concerning construct validity, assessing which technique

between covrel and OT reaches testing reliability faster (i.e.,

9Detailed results when considering the greedy additional approach and also
the “hard” fault-matrix are available at: http://labsedc.isti.cnr.it/covrel2017.
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finds all detectable failure regions) might not be a proper

measure of effectiveness in reliability improvement. In real

practice it would not be possible to conclude that reliability=1

has been reached because obviously we do not know a

priori how many failure points exist. Thus other stopping

rules to compare the “treatment” (covrel) against the baseline

might produce different outcomes. To mitigate such threat, we

fixed three checkpoints to complement the above result, and

compared the techniques at such intermediate values. However,

a true confirmation could only be achieved through reliability

assessment either in production or under a real operational

profile: in the context of the present study we could not

perform either, but the experimentation of covrel within an

industrial context is planned as future work.

Finally, concerning threats to external validity, the study

results may suffer of representativeness of the used subjects

and faults. With reference to subject representativeness, our

study covered in total 18 variant versions of four C programs.

Even though those 18 versions belong to four subjects only,

it is well known that for those four subjects from SIR the

differences between versions may be quite significant (and

this is also visible from variations of results across versions

in Figure 2). As for Sed, for instance, the development of v5

spans almost 5 years and the differences with respect to v4 are

impressive — nearly every “major” function changed signifi-

cantly. So, they could be considered as different programs. A

similar case of fairly significant differences happened between

versions v6 and v7 (as reported in the accompanying material

from SIR). Nevertheless, before the results can be generalized,

additional studies with a range of diversified subjects should

be conducted.

With reference to faults representativeness, as said, in our

study we considered seeded faults; subjects with real faults

might yield different results. Control for this threat can be

achieved only by conducting additional studies using subjects

with real faults.

E. Verifiability

It is a goal of this study to support independent verification

of the experiments, as well as repeatability with other subject

programs, also in consideration of the discussed threats to

external validity. To these aim, in addition to using subjects

from the SIR repository we developed artifacts for automating

the execution of the experiments, and we make them available

to the scientific community10.

The artifacts consist of:

• A prototypal covrel application with several modules

written in the Java and Python programming languages;

the prototype (delivered in a ’.jar’ file) takes as input the

subject program and its version, and the desired number

of repetitions (i.e., of profiles to generate);

• The detailed results of the experiments. These are pack-

aged in a number of files in CSV format: each experiment

10The covrel artifacts and detailed results of this study are available at the
URL: http://labsedc.isti.cnr.it/covrel2017.

includes the six configurations described in Section IV

(three coverage criteria by two types of fault matrix),

and produces five CSV files with many more details than

those presented here, plus a textual file with the console

output, which allows post-execution reconstruction of the

progress of the experiment.

Operating instructions for running the prototype of covrel are

provided in the README files accompanying it.

VI. CONCLUSIONS

When product reliability is a major concern, software testing

is often based on the operational profile, i.e., it exploits data

on typical product usage so as to expose failures — and then

remove the causing bugs — that will occur in operation with

higher probability, thus contributing more to the delivered

(un)reliability. One criticism to operational testing is that it

pays too little attention to failures with low probability of

occurrence, hence as testing proceeds reliability achieves some

stable level that becomes difficult to improve further.

In this paper, we have introduced covrel, a reliability-driven

adaptive testing technique that is hybrid, in that, first in its

kind, it complements black-box operational profile information

with white-box coverage measures based on count spectra.

This way, test selection is dynamically adapted towards those

program entities that have been less frequently covered, ulti-

mately yielding improved reliability.

With regards to scalability of covrel, the cost of collecting

coverage information is certainly a concern. The covrel tech-

nique is meant for practitioners who need to improve reliability

beyond “saturation” of conventional operational testing: in

such a context, the relevant cost is the high number of tests

required to meet the reliability target, rather than the overhead

of each test execution (namely, coverage costs). It is also

worth noting that the use of count spectra (and associated

cost) may compensate the availability of a not very detailed

operational profile, which is a common situation and a known

limitation of operational testing from the point of view of its

practical industrial application. However, we cannot state that,

in general, the benefits of covrel warrant coverage collection

costs, as this will depend on trade-offs to be assessed on a

case-by-case basis, and on how much the case under testing

falls in the mentioned target context.

In the future, our aim is to adapt covrel for test generation
(e.g. deriving the next test based on coverage spectra of tests

executed up to a certain time) other than for test selection
as we have done here. Moreover, further experiments with

large-scale applications need to be conducted in order to fine-

tune the adaptation criteria and of course to provide a more

comprehensive assessment of the proposed technique.
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